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Herrn  Prof. Dr Rfidorff danke ich fiir wertvolle 
Diskussionen und appara t ive  Unterstfi tzung. 
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']:he previous theoretica.1 work present.ed bl tlfis series is extended to cover diffraction by regular 
eh'eular cylindrical lattices with an oblique generating lattice, and by helical circular cylindrical 
lattices. 

1. Introduction 

The discussion of diffraction by cylindrical la.ttices 
in previous papers in this series (Whittaker,  1954, 
1955a, b) has been confined to those cases in which 
the two-dimensional  lattice inscribed on the cylindrical  
layers is pr imi t ive  and rectangular  and has one axis 
oriented perpendicular  to the cylinder axis. A par- 
t i tu la r  case of diffraction b y  a helical structure has 
also been discussed by  Jagodzinski  & Kunze (1954). 
:Now tha t  the possible types of cylindrical  lattices have 
been enumera ted  and classified (Whit taker ,  1955c), 
the  discussion is extended to diffraction by  regular 
cylindrical  lattices wi th  an oblique generat ing lattice, 
and by  those belonging to the helical series. The results 
for a regular circular cylindrical  latt ice with a centred 
generat ing latt ice are readi ly  deduced from the pre- 
vious discussion of cylindrical  structm'es containing 
more t h a n  one scattering centre associated with each 
latt ice point  (Whittaker,  1954, 1955a), and  they  have 
also been given in a recent  paper  by  Waser  (1955). 
They  are therefore not  discussed further,  but  some 
points  of interest  which arise in connexion with centred 
helical lattices are pointed out. 

2. T h e  anorthic cylindrical lattice of the  f i r s t  k i n d  

The geometrical characterist ics of this  latt ice type  have  
been defined previously (Whit taker ,  1955c). Considera- 
t ion of diffraction by  such a la t t ice completes the dif- 
fraction theory for regular circular cylindrical  lattices, 
since the monoelinie lat t ice of the  second k ind  con- 
st i tutes a special case obta ined by  pu t t ing  fl = ½~. 
The coordinate systems used are the  same as those 
defined in Par t  I (Whit taker ,  1954). 

The coordinates of the lat t ice point  denoted by  the  
set of integers m, v, n are 

~. = ~,n = ao-~I~zt , 

by + nc cos a 
q 8,, ,~ 

z = z , ~ = n c s i n a ,  

i The quantity denoted by em is the wl.lue of tp for the 
initial point of the ~th cylinde," and on the level n = 0. 
This quantity was denoted by 5m in Part I and by em in 
Part II. The latter convention is followed here, especially s~ 
¢~m is a convenient symbol for another parameter used in t.ho 
description of helical lattices (Whittaker, 1955c). 
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where a is the oblique angle included between the 
axes of the generating lattice. Proceeding in exactly 
the same way as in Pa r t  I, we therefore obtain 

F(~*, Y, z*) = -R ~ '  ~ ~ exp - -  ncz* sin ~ sin fl 

+ R q=~ "~'~ "~',, ~', exp ncz* sin ~ sin fl 

× exp [~-~ (ao+ma)z* sin fl cos fl] 

x i q cos q(q~m.,,n-- Y)Jq [2_~ ~(ao+ma)sin f l] .  (1) 

The first par t  of (1), which involves the zero-order 
Bessel function, is identical with the formula obtained 
in Par t  I for the sharp hO1 reflexions, apart  from the 
replacement of c by  c sin c~, which is in fact still the 
axial spacing between successive circles of points. This 
term therefore requires no further discussion. 

The second par t  of (1) differs from the corresponding 
formula discussed in Pa r t  I I  in that  the summation 
with respect to n cannot be taken outside the other 
summations because n is involved in qm,~, ~. However, 
the same considerations lead to the restriction 

q = Kpm 

~md to the same efimination of cross terms in the square 
of the modulus, and we therefore obtain 

I($, l) 2 ~  g%~ = Z ~ "  2 " P,nJ K~,,, (P,fl ) 
K m 

r27d , , 1 x ~ ' 2 '  e x p ~  ~' [ -~ ,  cz ( n - n )  sin a sin ft. 

× cos [2~-~c ( n - n  ') cos 0¢] . (2) 

The summation over n ahd n' is more conveniently 
expressed in the form" 

[ K )] 
½ ~ '  ~" exp 2~ic (n -n ' )  --~ sin ~ sin fl+ -b- cos .~ 

~/, n*  

+ ½ ~ ' ~ ' e x p  2 ~ i e ( n - n ' )  o~ s i n f l - ~ c o s  o~ . 
n ' n  t 

I t  is therefore non-zero, and has the usual profile, only 
near the values of z* given by 

~tl K cot c~ 
z* = c -  . . . .  "- + " s m a s m f l  bsin/3 

The diffuse OK1 reflexions are thus identical in profile 
with those discussed in Par t  II,  but  they occur in 
pairs symmetrically placed above and below the layer 
lines defined by the sharp hO1 reflexions. The separa- 
tion of the pairs is the same for all the layer lines but  
is proportional to the index K and also to cot ~. 

3. The anorthic cylindrical lattice of the second 
kind 

Consideration of the diffraction by such a lattice 
suffices for all the helical circular lattices, since the 
results for the other three types may  be obtained by 
inserting the appropriate special values of ¢¢ and ft. 
The nomenclature of the geometrical parameters of 
the helical lattice follows tha t  previously defined by 
the author (Whittaker, 1955c). In  order to avoid 
ambiguity, however, it  is necessary to adopt a sign 
convention for the angle 5m between the b axis and 
a plane perpendicular to the cylinder axis, and also 
for N, the order of the helix. The convention adopted 
is tha t  these parameters are positive if the helices 
formed by the b and c axes are of opposite hand and 
negative if they  are of the same hand. The positive 
directions of these axes are taken to include the obtuse 
angle a. With these conventions, the vth lattice point 
on the nth row of the generating lattice of the ruth 
cylinder has the coordinates 

Q = ~) .~  = a 0 + m a ,  

q~ = ~Vm ..... , = 2~v cos~ ~m(l + t a n  6m cot ~) 
Pm 

. . . . . .  2~n sin2 0re( l -cot  6m cot ~)+e,,, , 
N 

z = z,,,,.,,, = t cos 9" Om(n +Nv](I-i- tan O,,, cot 

The diffracted amplitude is therefore given by an 
expression of exactly the same form as (1) with the 
appropriate value of Zm,.,,~ replacing nc sin ~ in the 
first exponential factor in each summation. 

For brevity we put  

cos ~ dim(l÷tan ~ cot ~) = T 
and 

sin ~" Om(1-cot ~m cot ~) = U .  

Then in the term involving the zero-order Bessel func- 
tion the summations with respect to n and v may be 
separated (within the summation with respect to m). 
They are 

~ ,  2~i 
exp -=- z*nVl' sin fl (3) 

and 
2~i 

~ '  exp _ z*NtT  sin ft .  (4) 
, itP,, 

Expression (3) is appreciable only near 

z* = 12/tT sin fl , 
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and hence (4) is zero unless Nl is a multiple of pro. 
In  the case of a fibrous silicate we are interested only 
in values of Nl less than about 10 and pm greater than 
30. Hence, within these practical limits, the term 
involving the zero-order Bessel function is relevant 
only to the zero layer line. Here it  will give rise to sharp 
h00 reflexions identical with those discussed in Par t  I. 

In  the term involving higher-order Bessel functions 
the summations involving n and v may  be put  into 
the form 

½ exp (iz---; s,~Nt sin fl+iqem-iqT) 

x.Z, exp[2rdn(~tTsin#-qU)] 

[2z~Tv (q+z , Nt x÷oo  

× ~ exp 2zdn t T sin fl +q 

~ [2z Tv , Nt (5) 

The usual considerations then show tha t  one or 
other of these expressions is non-zero only when 

and 

i.e. 

q = Kp~=FNI 

12 K2 
± ~ __-____ ~ see ~ cot (¢¢ + Ore), 

t s i n  o ~111 p 

12 K2 
C ~- ¥ ±--g- sec ~,. cot (a + 0m), 

where the upper signs refer to the first half of the 
expression (5). 

When K = 0 the reflexions lie on the layer lines to 
be expected from a structure with an axial repeat of t. 
The expression for their amplitude is given by 

Qgb .al 
F(~*, Y, l) = ~ : exp (iN1Y) 

x ~ '  pm exp 2~ 7 ~m COS # J~z - -  ~ sin # . (6) 
171 

This result differs from tha t  for the sharp reflexions 
from a regular cylindrical lattice only in tha t  it con- 
tains a phase factor outside the summation (which 
will not affect the intensity) and tha t  it contains the 
Bessel function of order N1 instead of zero. The latter  
difference will have a negligible effect except close to 

= 0, where the meridional reflexions will be split 
into two as has already been discussed by Jagodzinski 
& Kunze (1954). 

When K # 0 the reflexions occur in pairs above and 
below the layer lines, as in the case discussed in § 2, 

but  these pairs of reflexions are dissimilar, since they  
depend on terms involving Bessel functions of different 
orders, Kp,n+N1 and Kpm-N1. The two reflexions in 
each pair therefore have similar profiles but  lie at  
slightly different values of ~e. Also, since the separation 
of the members of the pair depends on (~m as well as 
on ~, the contributions to the reflexions from each 
cylindrical layer of the lattice lie in general at  slightly 
different values of ~. If the resolution in a diffraction 
experiment is sufficient and if the values of (~m for the 
different layers present in a macroscopic specimen are 
sufficiently different (which will depend on the value 
of N and the distortions in the layers) the oscillations 
of the Bessel functions will no longer be smoothed out, 
and the OK1 reflexions will contain a fine structure. 
This will consist of two sets of fringes, one running 
parallel to the ~ axis corresponding to the separation 
of the reflexions from different cylindrical layers, and 
the other inclined at  a small angle to the $ axis, cor- 
responding to the varying positions of the m a ~ m a  
and minima of J~vm+~z(kpm/sin(o~÷~m)) in terms 
of k, as a function of m. 

No simplification of the above phenomena occurs if 
we put  ~ = ½~. However, if we postulate appropriate 
distortions in the cylindrical layers to make 

~+~m = ½~ 
on all such layers, then we obtain the special case 
which has been treated previously by  Jagodzinski & 
Kunze (1954). In  this case the reflexions are all con- 
fined to the same layer lines, and the profile of an 
OKl reflexion is given by 

Q2g2b9 k 
-R-~--.~ P,"n{J~-.vz(Pm )+g~-.~,,~-~vt(pmk)} . (7) 

m 

Fig. I shows the form of a single term of (7) for several 
values of Nl (half-integral values are included for 
reason which will appear in § 4). I t  is evident tha t  the 
profiles of OK1 reflexions from such a lattice will 
exhibit a marked dependence on l, unlike the cor- 
responding reflexions from a regular cylindrical lattice. 

4. Centred latt ices  

If the generating lattice is centred it  may  in general 
be considered to consist of two congruent interpene- 
trating lattices with a relative displacement. A phase 
difference in the rays diffracted by the two lattices 
is thereby introduced and leads to the usual extinction 
of reflexions with K + I  odd. This has been formally 
proved by Waser (1955). The analysis breaks down, 
however, if the lattice is helical and the value of N is 
half-integral. In these circumstances the lattice may  
still be resolved into two interpenetrating mutual ly  
displaced lattices of a sort, but  neither of these~is:a- 
helical lattice in the sense in which this term has been 
defined, and the above diffraction theory~cannot be 
applied to them separately. The lattice must  therefore 
be considered as a whole. 
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If N is half-integral it follows tha t  p~ is also half- 
integral, but  there are 2pro lattice points in every nth  
row of unit  cells of the generating lattice. With  this 
slight change in the significance of n, and with the 

/ •  (a) 

(b) 

1 "0 1 "2 1.4 
k 

2 ]c ~-. Fig. 1. J~n_~Vl(kprn)-{-Jpm+~Vl(Pro) for Pm 65 and the fol- 
lowing values of Nl: (a)0; (b)0.5; (c)1.0; (d)1.5; (e)2.5; 
(f) 5-0. In order to correspond strictly with the diffracted 
intensity from a single layer of a helical cylindrical lattice, 
Pm should be half-integral when N1 is half-integral; but no 
appreciable difference is produced in the curves by a change 
of 0.5 in p,n. 

summation with respect to v extended to cover the 
range 1 ~ v ~ 2pro, all the formulae of § 3 are valid, 
and the conditions for the diffracted amplitude to be 
non-zero remain true. (When it is non-zero the am- 
plitude is, of course, double tha t  from a primitive lattice; 
analytically this arises from doubling the range of the 
summation over ~.) However, the condition 

q = Kpm~= N1 

includes the condition tha t  K + l  be even, since only 
integral values of q are involved in the expansion 

o o  

exp (ix cos O) = Jo(x)+~Y, i ~ cos qOJq(x) . 
q----1 

The restriction on the indices therefore arises analyti- 
cally from a restriction on the orders of the Bessel 
functions, instead of in the usual way by the cancelling 
of trigonometric terms of opposite sign. Physically, of 
course, the restriction arises in precisely the same way 
as usual. 

I t  is evident on general grounds tha t  centred cylin- 
drical lattices of the type  cn (Whittaker, 1955c) will 
diffract in exactly the same way as a primitive lattice, 
except tha t  bOO reflexions will occur only when h is 
a multiple of n. 

I wish to thank  the Directors of Ferodo Ltd  for 
permission to publish this paper. 

References 

JAGODZII~SKI, i .  & KUNZE, G. (1954). Neues Jb. Miner. 
Mh. p. 137. 

WASER, J. (1955). Acta Cryst. 8, 142. 
WHITTAKER, E. J. W. (1954). Acta Cryst. 7, 827. 
WHrrrAKER, E. J. W. (1955a). Acta Cryst. 8, 261. 
WB~T~A]:ER, E. J. W. (1955b). Acta Cryst. 8, 265. 
WE:~A~r~.R, E. J. W. (1955e). Acta Gryst. 8, 571. 

Short Communicat ions  
Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 

500 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily 
as possible; and proofs will not generally be submitted to authors. Publication will be quicker i f  the contributions 
are without illustrations. 

Acta Cryst. (1955). 8, 729 

D e t e r m i n a t i o n  of  t h e  a b s o l u t e  c o n f i g u r a t i o n  of  o p t i c a l l y  a c t i v e  c o m p l e x  i o n  [Coena]  3+ b y  
m e a n s  of X-rays. By YOSHIH:~:O S~TO, KAZUM: I~-~TSU, MOTOO SHIne and H:sAo KUROYA, Institute of 
Polytechnics, Osaka City University, Minami.Ogimachi, Osaka, Japan 

(Received 2 June 1955) 

The absolute configuration of optically active tris- Peerdeman & van Bommel, 1951). Hitherto unrecorded 
ethylene-diamine cobalt (III) complex ion has been double salts having the composition 2D-[Coena]C13.NaC1. 
determined using the absorption-edge technique (Bijvoet, 6H~O and 2L-[Coen.~]CI.~.NaC1.6H20 (en: ethylenedi- 


